A diagrammatic categorification of the q-Schur algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The (Q, q)–Schur Algebra

In this paper we use the Hecke algebra of type B to define a new algebra S which is an analogue of the q–Schur algebra. We construct Weyl modules for S and obtain, as factor modules, a family of irreducible S–modules over any field.

متن کامل

THE q-SCHUR ALGEBRA

We study a class of endomomorphism algebras of certain q-permutation modules over the Hecke algebra of type B, whose summands involve both parabolic and quasi-parabolic subgroups, and prove that these algebras are integrally free and quasi-hereditary, and are stable under base change. Some consequences for decomposition numbers are discussed. The notion of a q-Schur algebra was introduced by Di...

متن کامل

A Diagrammatic Temperley-Lieb Categorification

The monoidal category of Soergel bimodules categorifies the Hecke algebra of a finite Weyl group. In the case of the symmetric group, morphisms in this category can be drawn as graphs in the plane. We define a quotient category, also given in terms of planar graphs, which categorifies the Temperley-Lieb algebra. Certain ideals appearing in this quotient are related both to the 1skeleton of the ...

متن کامل

THE WEIGHTED FUSION CATEGORY ALGEBRA AND THE q-SCHUR ALGEBRA FOR GL2(q)

We show that the weighted fusion category algebra of the principal 2-block b0 of GL2(q) is the quotient of the q-Schur algebra S2(q) by its socle, for q an odd prime power. As a consequence, we get a canonical bijection between the set of isomorphism classes of simple kGL2(q)b0-modules and the set of conjugacy classes of b0-weights in this case.

متن کامل

A diagrammatic approach to categorification of quantum groups I

To each graph without loops and multiple edges we assign a family of rings. Categories of projective modules over these rings categorify U − q (g), where g is the Kac-Moody Lie algebra associated with the graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum Topology

سال: 2013

ISSN: 1663-487X

DOI: 10.4171/qt/34